Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38710235

RESUMO

BACKGROUND: LCP1 encodes L-plastin, an actin-bundling protein primarily expressed in hematopoietic cells. In mouse and fish models, LCP1 deficiency has been shown to result in hematological and immune defects. OBJECTIVE: To determine the nature of a human inborn error of immunity resulting from a novel genetic variant of LCP1. METHODS: We performed genetic, protein and cellular analysis of PBMCs from a kindred with apparent autosomal dominant immune deficiency. We identified a candidate causal mutation in LCP1, which we evaluated by engineering the orthologous mutation in mice and Jurkat cells. RESULTS: A splice-site variant in LCP1 segregated with lymphopenia, neutropenia, and thrombocytopenia. The splicing defect results in at least two aberrant transcripts, producing an in-frame deletion of 24 nucleotides, and a frameshifting deletion of exon 8. Cellular analysis of the kindred revealed a proportionate reduction of T and B cells, and a mild expansion of transitional B cells. Similarly, mice carrying the orthologous genetic variant exhibited the same in-frame aberrant transcript, reduced expression Lcp1 and gene dose-dependent leukopenia, mild thrombocytopenia, and lymphopenia, with a significant reduction of T cell populations. Functional analysis revealed that LCP1c740-1G>A confers a defect in platelet development and function with aberrant spreading on collagen. Immunological analysis revealed defective actin organisation in T cells, reduced migration of PBMCs from patients, splenocytes from mutant mice, and a mutant Jurkat cell line in response to CXCL12, impaired germinal centre B cell expansion after immunisation, and reduced cytokinesis during T cell proliferation. CONCLUSION: We describe a unique human hematopoietic defect affecting neutrophils, lymphocytes and platelets, arising from partial LCP1 deficiency.

2.
PLoS One ; 17(11): e0277019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36318583

RESUMO

Acinetobacter baumannii is an emerging nosocomial, opportunistic pathogen with growing clinical significance globally. A. baumannii has an exceptional ability to rapidly develop drug resistance. It is frequently responsible for ventilator-associated pneumonia in clinical settings and inflammation resulting in severe sepsis. The inflammatory response is mediated by host pattern-recognition receptors and the inflammasomes. Inflammasome activation triggers inflammatory responses, including the secretion of the pro-inflammatory cytokines IL-1ß and IL-18, the recruitment of innate immune effectors against A. baumannii infection, and the induction programmed cell death by pyroptosis. An important knowledge gap is how variation among clinical isolates affects the host's innate response and activation of the inflammasome during A. baumannii infection. In this study, we compared nine A. baumannii strains, including clinical locally-acquired isolates, in their ability to induce activation of the inflammasome and programmed cell death in primary macrophages, epithelial lung cell line and mice. We found a variation in survival outcomes of mice and bacterial dissemination in organs among three commercially available A. baumannii strains, likely due to the differences in virulence between strains. Interestingly, we found variability among A. baumannii strains in activation of the NLRP3 inflammasome, non-canonical Caspase-11 pathway, plasmatic secretion of the pro-inflammatory cytokine IL-1ß and programmed cell death. Our study highlights the importance of utilising multiple bacterial strains and clinical isolates with different virulence to investigate the innate immune response to A. baumannii infection.


Assuntos
Acinetobacter baumannii , Inflamassomos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-1beta/metabolismo , Caspases/metabolismo , Macrófagos/metabolismo
3.
Nat Commun ; 13(1): 4395, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906252

RESUMO

Inflammasomes are cytosolic signaling complexes capable of sensing microbial ligands to trigger inflammation and cell death responses. Here, we show that guanylate-binding proteins (GBPs) mediate pathogen-selective inflammasome activation. We show that mouse GBP1 and GBP3 are specifically required for inflammasome activation during infection with the cytosolic bacterium Francisella novicida. We show that the selectivity of mouse GBP1 and GBP3 derives from a region within the N-terminal domain containing charged and hydrophobic amino acids, which binds to and facilitates direct killing of F. novicida and Neisseria meningitidis, but not other bacteria or mammalian cells. This pathogen-selective recognition by this region of mouse GBP1 and GBP3 leads to pathogen membrane rupture and release of intracellular content for inflammasome sensing. Our results imply that GBPs discriminate between pathogens, confer activation of innate immunity, and provide a host-inspired roadmap for the design of synthetic antimicrobial peptides that may be of use against emerging and re-emerging pathogens.


Assuntos
Proteínas de Transporte , Inflamassomos , Animais , Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Citosol/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Imunidade Inata , Inflamassomos/metabolismo , Mamíferos/metabolismo , Camundongos , Transdução de Sinais
4.
Adv Exp Med Biol ; 1221: 607-630, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274728

RESUMO

Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing beta cells in pancreatic islets. The degradation of the glycosaminoglycan heparan sulfate (HS) by the endo-ß-D-glycosidase heparanase plays a critical role in multiple stages of the disease process. Heparanase aids (i) migration of inflammatory leukocytes from the vasculature to the islets, (ii) intra-islet invasion by insulitis leukocytes, and (iii) selective destruction of beta cells. These disease stages are marked by the solubilization of HS in the subendothelial basement membrane (BM), HS breakdown in the peri-islet BM, and the degradation of HS inside beta cells, respectively. Significantly, healthy islet beta cells are enriched in highly sulfated HS which is essential for their viability, protection from damage by reactive oxygen species (ROS), beta cell function and differentiation. Consequently, mouse and human beta cells but not glucagon-producing alpha cells (which contain less-sulfated HS) are exquisitely vulnerable to heparanase-mediated damage. In vitro, the death of HS-depleted mouse and human beta cells can be prevented by HS replacement using highly sulfated HS mimetics or analogues. T1D progression in NOD mice and recent-onset T1D in humans correlate with increased expression of heparanase by circulating leukocytes of myeloid origin and heparanase-expressing insulitis leukocytes. Treatment of NOD mice with the heparanase inhibitor and HS replacer, PI-88, significantly reduced T1D incidence by 50%, impaired the development of insulitis and preserved beta cell HS. These outcomes identified heparanase as a novel destructive tool in T1D, distinct from the conventional cytotoxic and apoptosis-inducing mechanisms of autoreactive T cells. In contrast to exogenous catalytically active heparanase, endogenous heparanase may function in HS homeostasis, gene expression and insulin secretion in normal beta cells and immune gene expression in leukocytes. In established diabetes, the interplay between hyperglycemia, local inflammatory cells (e.g. macrophages) and heparanase contributes to secondary micro- and macro-vascular disease. We have identified dual activity heparanase inhibitors/HS replacers as a novel class of therapeutic for preventing T1D progression and potentially for mitigating secondary vascular disease that develops with long-term T1D.


Assuntos
Diabetes Mellitus Tipo 1/enzimologia , Glucuronidase/metabolismo , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Glucuronidase/antagonistas & inibidores , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/patologia
5.
Cell Host Microbe ; 25(4): 602-616.e7, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30902577

RESUMO

Establishing the balance between positive and negative innate immune mechanisms is crucial for maintaining homeostasis. Here we uncover the regulatory crosstalk between two previously unlinked innate immune receptor families: RIG-I, an anti-viral cytosolic receptor activated type I interferon production, and NLR (nucleotide-binding domain, leucine repeat domain-containing protein). We show that NLRP12 dampens RIG-I-mediated immune signaling against RNA viruses by controlling RIG-I's association with its adaptor MAVS. The nucleotide-binding domain of NLRP12 interacts with the ubiquitin ligase TRIM25 to prevent TRIM25-mediated, Lys63-linked ubiquitination and activation of RIG-I. NLRP12 also enhances RNF125-mediated, Lys48-linked degradative ubiquitination of RIG-I. Vesicular stomatitis virus (VSV) infection downregulates NLRP12 expression to allow RIG-I activation. Myeloid-cell-specific Nlrp12-deficient mice display a heightened interferon and TNF response and are more resistant to VSV infection. These results indicate that NLRP12 functions as a checkpoint for anti-viral RIG-I activation.


Assuntos
Proteína DEAD-box 58/imunologia , Proteínas de Ligação a DNA/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/fisiologia , Fatores de Transcrição/imunologia , Animais , Proteína DEAD-box 58/genética , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Interferons/genética , Interferons/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Fatores de Transcrição/genética , Ubiquitinação
6.
Pathog Dis ; 76(9)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657912

RESUMO

Acinetobacter baumannii is an emerging nosocomial, opportunistic pathogen with growing clinical significance. Acinetobacter baumannii has an exceptional ability to rapidly develop drug resistance and to adhere to abiotic surfaces, including medical equipment, significantly promoting bacterial spread and also limiting our ability to control A. baumannii infections. Consequently, A. baumannii is frequently responsible for ventilator-associated pneumonia in clinical settings. In order to develop an effective treatment strategy, understanding host-pathogen interactions during A. baumannii infection is crucial. Various A. baumannii virulence factors have been identified as targets of host innate pattern-recognition receptors, which leads to activation of downstream inflammasomes to develop inflammatory responses, and the recruitment of innate immune effectors against A. baumannii infection. To counteract host immune attack, A. baumannii regulates its expression of different virulence factors. This review summarizes the significance of mechanisms of host-bacteria interaction, as well as different bacteria and host defense mechanisms during A. baumannii infection.


Assuntos
Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/imunologia , Acinetobacter baumannii/patogenicidade , Interações Hospedeiro-Patógeno , Imunidade Inata , Fatores de Virulência/metabolismo , Humanos
7.
Nat Commun ; 8(1): 299, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28824166

RESUMO

The C-type lectin member 5A (CLEC5A) is a pattern recognition receptor for members of the Flavivirus family and has critical functions in response to dengue virus and Japanese encephalitis virus. Here we show that CLEC5A is involved in neutrophil extracellular trap formation and the production of reactive oxygen species and proinflammatory cytokines in response to Listeria monocytogenes. Inoculation of Clec5a -/- mice with L. monocytogenes causes rapid bacterial spreading, increased bacterial loads in the blood and liver, and severe liver necrosis. In these mice, IL-1ß, IL-17A, and TNF expression is inhibited, CCL2 is induced, and large numbers of CD11b+Ly6ChiCCR2hiCX3CR1low inflammatory monocytes infiltrate the liver. By day 5 of infection, these mice also have fewer IL-17A+ γδ T cells, severe liver necrosis and a higher chance of fatality. Thus, CLEC5A has a pivotal function in the activation of multiple aspects of innate immunity against bacterial invasion.The lectin receptor CLEC5A is a pattern recognition receptor that has been shown to detect dengue and Japanese encephalitis virus. Here the authors show that CLEC5A is needed for optimal ROS production, NET formation and other immune responses to Listeria monocytogenes in mice.


Assuntos
Imunidade Inata/imunologia , Lectinas Tipo C/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Receptores de Superfície Celular/imunologia , Animais , Citocinas/imunologia , Citocinas/metabolismo , Armadilhas Extracelulares/genética , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Listeria monocytogenes/fisiologia , Listeriose/genética , Listeriose/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...